
Workflow Platform TeamJuly 2020

Spinner
Next Gen Workflow Engine on K8s at Pinterest

Agenda 1. WHY

2. HOW

3. WRAP-UP

4. Q/A

01
WHY

WHY (Pain Points)

● Performance and scalability issues
○ Schedule / job start delay
○ Stateful component not being able to scale.
○ Centralized MetaStore service as SPOF

● High maintenance cost
○ Infra upgrades (ubuntu etc)
○ Multiple clusters (due to load partitioning)
○ Supervised worker slot scale up.

● Features missing
○ ACL and Auditing.
○ Execution stats virtualization
○ Code isolation.

● Deep learning overhead
○ Mostly in house project with own DSL
○ Insufficient doc

WHY (Why Airflow)

● Industry standard
○ Widely adopted
○ Good document support
○ Active community

● Good feature alignment
○ Python based.
○ Contains a lot of demanding features out of box.
○ Modularized and has standardized interfaces.

● Able to scale
○ Stateless UI.
○ Partitionable Scheduler (with modification)
○ Able to leverage kubernetes to scale task load.

● Good reputation :)

02
HOW

Workflow Scale @ Pinterest

4K+
TOTAL FLOWS

10+
CLUSTERS

10K+
DAILY FLOW
EXECUTION

38K+
DAILY JOB
EXECUTION

HOW (POC and Test)

● MVP / POC cluster setup
○ Branched from 1.10.stable (1.10.4.rc3).
○ Two UI node one Scheduler (c5.2xlarge).
○ MySQL(1 master/1 slave, c5d.4xlarge).
○ Customized POC k8s Executor.
○ Worker pod with 300 Mhz CPU, 300MB

requested mem/1G max.

● Perf / load / stress test
○ Measures performance in light load.
○ Checks to which extent scale is needed.
○ Estimate the cluster scope we need.
○ Identify the bottleneck and try to address it.

HOW (Design)

● Single entry point w/ Multiple schedulers.
○ Unified UI contains all the dags.
○ Multi schedulers providing load partitioning

and tier support.

● K8s Integration for execution scaling.
○ Rewrite/redesign k8s Executor to work with

the Pinterest internal k8s setup.
.

● CI/CD pipeline provides infra/user code isolation
○ All modules dockerlized.
○ Dags/infra code in different repro.

● One-script-away test env setup
● DLAC based access control and backup from UI
● Automated Job migration from old system

HOW (Onboarding to K8s)

● Rebuild the K8s Executor to accommodate the
Pinterest K8s Setup.

○ Rewrite all the k8s APIs to interact with
Pinterest inhouse K8s setup.

○ Retain the basic business logic from open
source K8s Executor.

● Full Runtime isolation and ability to scale
up/down

○ Each task runs in their own pod (migration
case takes two pods).

○ Pods share k8s nodes with other services.
○ Pods get removed right after task execution.

● Rebuild K8s Operator.
○ Support Pod over Pod scenario (mainly used

by migration cases). User can choose to bring
their own image to execute jobs.

.

HOW (K8s Executor continued)

● Rebuild the k8s pod status pulling mechanism
○ Create Pinterest Watcher to pull pod status

due to Pinterest k8s setup.
○ Use labels to isolate PODs started by different

schedulers.
● Pod customization

○ Combine dag_id, task_id, execution date, try
number info to create meaningful Pod name.

○ Pod customization with different requirements
(Pod Env, Image, resources, packages.)

● Pod readiness check
○ S3, Mysql, Knox

● Rebuild/Refine the log pulling mechanism
○ Upload logs to s3 after task completion.
○ Runtime logs get synced to Pinterest ES.
○ UI pulls runtime logs from Pods or Pinterest

ES. (Works for Pod failed case before
executing task as well)

HOW (CI/CD Pipeline)

● Separate repositories for infra and user code
○ Decouple the deployment cycle.

● Infra CI/CD
○ Infra code changes trigger a Jenkins job to

make build and push the new image to registry.
○ Jenkins job notifies Teletraan to refresh the

image/containers on the VM nodes.
○ K8s Pods will use the same image as scheduler

to execute new tasks.
○ User doing local test will be able to load the

latest image to test out their dag.

● Dag CI/CD
○ User code changes trigger a Jenkins job to

sync dags to S3.
○ Daemon runs on the VM nodes (scheduler)

syncs the file from S3 in a very short interval (30
sec).

○ Worker pod also syncs latest dags from S3.

HOW (Enforced DLAC)
dag = DAG('pinterest_hadoop_dag_spinner_tier_3_0',
 catchup=False,
 default_args=default_args,
 schedule_interval=timedelta(minutes=60),
 access_control={'spinner-users':
{'can_dag_read','can_dag_edit'}},
 doc_md=doc_md,
 project='workflow')

The default user self registration role
AUTH_USER_REGISTRATION_ROLE = "spinner-users"

● Enforced DLAC for every dag
○ Access_control field is mandatory.
○ Default role is assigned during users first login.
○ Pre-populated roles for different team/org.
○ Manual approval user-role assignment

(automation pending)

● Early dag perm sync.
○ Dag access info is synced to DB when the dag

is parsed by scheduler.

● Filtered dag list for individuals.
○ Can only see dags opened to “spinner-users”.
○ Can only see dags granted access to a role

user is assigned.

● Action Auditing.

When set to True the access_control field of the DAG will be
analyzed and synced to the DB when the
DAG object is constructed, otherwise the sync will be deferred to
when of the following happens:
1. the web app is reconstructed (usually happens when web server
restarts)
2. dag manually refreshed in UI (via the refresh button)
3. sync_perm call via CLI.
early_dag_perm_sync = False

HOW (Backfill from UI)

● One Stop Service Portal
○ No learning cost to user as compared to how to

use the CLI tool.
○ No concerns regarding releasing DB connection

credentials to user if backfill can only be performed
via CLI.

○ Fully utilizing the RBAC/DLAC from UI:
■ Admin controls who can access backfill

page.
■ Users can only backfill for DAGs they have

write access to.
○ Utilize different pool to separate the backfill traffic

out from the production.
○ Set limits on the max sized backfill a user can run

(overridable by admins)
○ Uses cluster configs for resources (same

regulations as scheduled runs)

HOW (Dag & Task Run Info UI)

Task Instance Table
● Added under graph view to give clear metadata

info of the executions.
● Application ids of cluster submissions (extra links)

Dag Run History View
● Added as new tab to give dag run history.

Current Browse->DR view not easy to use &
missing duration info

HOW (Multi-Scheduler)
● Rule Based Dag Partitioning

○ Customized rule based partitioner maps a given dag to a
specific partition (currently is based on the dag file path)

○ Multi scheduler nodes, with each monitoring a specific
partition and processing DAGs belong to its assigned
partition.

○ UI will render all DAGs despite the partition, when task is
reset manually from UI, UI will make sure the TI is
submitted to the correct partition so the corresponding
scheduler can process it.

● Tiering Support
○ Flows with different priority will be put into different

partitions managed by different scheduler nodes

HOW (Testing)

● One-script-away test environment setup
○ Script included in the user dag repro

○ One bash command to pull the latest image,
setup UI and scheduler on local box.

○ View DAG layout in UI and test out DAG
execution via localExecutor.

HOW (Automated Migration)

● Not a direct translation to Airflow DSL
○ User logic and dependencies made direct DSL

translation impossible.
○ Customized scheduler to extract flow layout

from existing pinball workflows.
○ Rebuild Airflow Dag on the fly.
○ Utilize dag serialization so UI and worker

doesn’t need physical Dag files for rendering
and execution.

● Automated migration tool with “click to migrate”
○ UI based tool for user to easily migrate existing

flows on pinball to spinner.
○ Easy rollback if things doesn’t workout for the

first attempt.

03
WRAP-UP

WRAP-UP (Where We Are)

● Spinner GAed Late December 2019.
○ Shipped Airflow 1.10.stable merged with pr_5743.
○ Two production envs each has 2 webserver nodes

with 6 schedulers.
○ Running on k8s infrastructure.

● Migration planned and ongoing.
○ Migration from pinball is ongoing and gained user

support.
○ 800+ production flows have been migrated to

spinner (June 2020).

● User trainings ongoing.
○ ~30 new operators (June 2020).
○ +80 native flows onboard (June 2020).
○ ~600 registered internal users (June 2020).

WRAP-UP (Next Step)

● Dag Versioning
○ Support use case where dag layout is

generated dynamically and may vary
between scheduler scanning.

○ Not supported natively by Airflow.

○ Compute & serialize the dag layout each time
a dagrun is created and uses execution_date
as versioned dag layout id.

○ Modify scheduler/webserver/worker logic to
fetch (deserialize) versioned dag layout when
needed.

WRAP-UP (Next Step)

● IDE Auto Templating
○ Enable users to compose dag from templates

● New Operators and feature pairing
○ Support more user cases and business logic.
○ New features to ease user onboarding and improve

system stability and scalability.

● System Integration
○ Support systems based on workflow engine.
○ SDK/API support

● Contribute

04
Q/A

THANK YOU

